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1. Introduction

The Joint Verification Experiments (JVE) between the US and the USSR
were designed to improve yield estimates and verification methods for
underground nuclear test conducted in the US and the Soviet Union. As part of
this agreement, members of a US team retrieved cores of underground rock
samples from the Semipalatinsk test site, USSR. The mechanical properties of
these rocks are now being measured in a number of laboratories in the US. In
support of this project, the Defense Advanced Research Project Agency
(DARPA) has begun geological and geophysical characterization of a potential
analogue test site here in the US.. As a first step, it was decided to measure a
number of mechanical properties of end member samples retrieved from the
analogue site for comparison with similar lithologies from the Soviet Union. A
team of scientist and engineers from the US Geological Survey, the Lamont-
Doherty Geological Observatory (Lamont), and the Smithsonian Institute
traveled to Northern Maine and studied the geology of the Mt. Katahdin region.
Samples of rock were selected and shipped to Lamont, Stanford Research
Institute (SRI), and New England Research, Inc. for testing.

The test conducted at Lamont compared strengths of end member
samples under different confining pressures, strain rates, saturation conditions
and pore pressures. The two selected end members were Katahdin "granite"
and a tuffaceous sandstone. The same test were conducted on Sierra White
granite for comparison with a standard. This paper reports the results of these
test as obligated under DARPA Contract No. UCS10-G-98021-3218.

2. b of Rocks Tested

The analogue Soviet test site, selected in the late 1970's by members of
the U.S Geological Survey, is located in the Shin Pond quadrangle of northern
Maine shown on the map in Appendix 1. The region has a total of I I different
rock types listed in Appendix 2. In August, 1989, a team of researchers spent
more than 2 weeks in the field inspecting the rock types and concluded that
the end member rock strengths were best represented by a Katahdin "granite"
and either a tuffaceous sandstone or a fossiliferous limestone. Samples of all



three were collected and delivered to LDGO for testing along with a granite
from Nickerson Lake, Maine.

At a workshop held at Lamont on September 15 and 16, 1989,
Katahdin granite was chosen for testing as representing the strongest member
of the 11 possible rock types while the tuffaceous sandstone was chosen for
testing as the weakest end-member. Katahdin granite is really a quartz
monzonite, a medium-gray to light-gray, medium-grained massive plutonic
rock characterizing the Katahdin batholith (Station 8, Appendix I). It is mostly
massive and structureless, composed of 45% microcline, 34% quartz, 9% albite,
10% biotite and 2% opaque (Neuman, 1967). Although the rock shows evidence
of possessing a slight crack population, there has been little trouble obtaining
intact cores from the block. Nickerson Lake granite, a rock type similar to
Katahdin, but with smaller grain size, was retrieved from a quarry (Appendix I,
Station Ila). The weakest member of the suite is a tuffaceous sandstone from
the Shin Brook formation (Station 6, Appendix I). This rock shows moderate
evidence of tectonic shearing and jointing which has made core recovery for
testing extremely difficult.

In addition to the two types discussed above, two blocks of Sierra White
granite were shipped from SRI to Lamont for testing. This rock has been used
in shock test at Alex Florence's lab at SRI and it was considered important to
see how the results from fracture test on Sierra White compared with results
from the SRI test.

3. ) Experimental

In this study 32 experiments were conducted, 11 each for Katahdin
granite and Tuffaceous sandstone, 8 for Sierra White and 2 for Nickerson Lake
granite. Samples were cored from the blocks in two different sizes. Katahdin,
Nickerson Lake and Sierra White granite cores were approximately 9 cm in
length and 3.5 cm in diameter. The Tuffaceous sandstone was highly fractured
and sheared, so it was nearly impossible to core intact samples of comparable
size. Consequently, we chose to reduce the size of the cores to 2. 54 cm in
diameter and 4 cm in length to improve our chances of intact recovery.
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We conducted hydrostatic compression test on samples cored in three

perpendicular orientations to assure detection of any strain anisotropy in the

specimens. As described in Scholz and Koczynski (1979), the KG 10 sample was

oriented perpendicular to the the plane of greatest crack density which also

corresponds to the plane of variably developed biotite foliation. The KG 13

sample was oriented with reference to the secondary preferred orientation of

cracks, whereas KG 14 was cored relative to the plane of low preferred crack

orientation. All Katahdin granite samples used in fracture experiments were

cored similarly to KG 10.

In like manner, three specimens of tuffaceous sandstones for the
hydrostatic test were cored with reference to the bedding plane. TS 6 was

oriented perpendicular to the bedding plane, while TS 11 was oriented

perpendicular to the plane of maximum jointing.

All ends were ground parallel to within . 002 mm / mm and cleaned i n

vacuo with acetone. The samples were jacketed in copper and three strain

gages, two radial and one axial were mounted on each sample. The samples

used in hydrostatic test were mounted with two axial and two radial strain

gages.

All experiments were conducted at room temperature, in a

programmable, servo-controlled, triaxial apparatus. Table 1 list the

experiments and the conditions for the experiments performed. Kerosene was

used as a confining medium and pressure was controlled to within 0.01MPa.

Compressibility measurements were made by increasing the confining pressure

at a rate of 0.2 MPa S-1 from room pressure to 200 MPa. In the fracture test, a

hydraulic ram applied the axial load with a piston that was displacement-

controlled to within 0.1 microns. Pore pressure was servo-controlled to within

0.01 MPa. Data was recorded using a Digital Equipment Corporation, PDP 1103

computer. The data was then transferred to a Sun microsystem computer for

processing and analysis. Both saturated and dry (laboratory humidity) samples

were used for fracture test. Strain rates were varied between 10-3 and 10-6

sec-l. Three confining pressures of 0.35, 6.9 and 13.8 MPa were used to match

the conditions of experiments performed by A. Florence.
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4.) Experimental Results

Hydrostatic Test

Three hydrostatic test were done on each specimen type, results from
one test will be discussed. Representative plots of linear strains recorded
during a hydrostatic compression test on Katahdin granite are shown in Figure
1. Each curve is a. plot of strain from the KG 10 sample measured in one of
three perpendicular orientations. The non-linearity observed in the stress-
strain curves at the lower pressures represents closing of flat cracks (Brace,
1965; Walsh, 1965). At higher pressure, about 100 MPa, the graphs are nearly
linear suggesting the cracks have been closed. Even so, at 200 MPa, there
remains a difference in the slopes of these three curves which represents a

slight mineral anisotropy in the sample. Linear compressibility as a function of
confining pressure is plotted in Figure 2. Only slight differences are observed
for the three orientations over the range of the pressures of the experiment,
suggesting an absence of any preferred crack orientation in the sample. In
Figure 3 confining pressure is plotted against the volumetric strain. From the
slopes of this curve we obtain the bulk modulus as a function of pressure, as
well as an estimate of the porosity of the sample. The hysteresis in the
unloading curves results from friction along internal cracks.

Figure 4 gives the linear strains in three orientations for the tuffaceous
sandstone sample, T 6, plotted against confining pressure. In contrast to the
plots from the Katahdin granite in Figure 1 above, the curves in Figure 4 are
more linear even at the lower pressures. At first glance, this suggest that this
rock has fewer cracks to close, but the presence of visible joints in the rock
suggest otherwise. We will return to this problem in the discussion below. The

compressibility curves in Figure 5 are nearly constant above 50 MPa, whereas

below 20 MPa the presence of a small number of highly oriented cracks is

shown by the different slopes in compressibility for one of the orientations. As
for the Katahdin granite examined above, the graphs show that at 200 MPa

there remains a small difference in the compressibility curves depending upon
orientation suggesting a mineral anisotropy. Volumetric strain, the sum of the
three linear strains, is plotted against the confining pressure in Figure 6. Note
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the absence of the hysteresis portion of the curve at low pressures, in contrast
to KG 10 in Figure 3.

The bulk moduli as a function of pressure are given in Table 2 and
plotted in Figure 7 for both rock types. Values for Sierra White granite from
Martin and Koyner (1987) are included for comparison. The incompressibility
of Katahdin granite is slightly less than Sierra White at lower pressures
possibly due to a difference in crack density. The convergence of the two
parameters at 200 MPa supports this interpretation. The incompressibility of
the tuffaceous sandstone is also plotted in the figure. Although this rock type
contains a number of joints, the bulk moduli is significantly higher than the
values measured from any of the other rock types. Again, the reasons for this

difference will be discussed later.

Fracture Test

Table 3 list the Young's Modulus from the stress-strain curves taken at
50% of fracture. The Katahdin granite and Sierra White granite both have
nearly identical values, while the tuffaceous sandstone are more compliant
probably due to the nature of the crack population.

Figure 8 gives the fracture strengths for the rocks tested over the range
of confining pressures tested at 10-4 s-1 strain rate. It shows that there is very
little difference in strength between Sierra White and Katahdin granite for
either dry or saturated samples. The Nickerson Lake granite, a smaller grain
rock than the Katahdin or Sierra granite, is stronger than either of these two
rock types, and its strength increases with pressure at the same rate as the
other two granites. The tuffaceous sandstones are similar in strength to the
granites at low pressures. The dry samples show almost no confining pressure

dependence, but the saturated sample are slightly dependent.

Figures 9-11 show the fracture stress as a function of confining pressure
for each of the four rock types along with the results of test with controlled
pore pressure. These experiments were performed at strain rates of 10-4 s-1.
For the three rock types tested, almost no difference is detected between
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samples with effective pressures of 6.7 MPa and saturated, drained samples
having effective pressures of 13.8 MPa. Also note that the experiments done
with pore pressure do no obey the effective stress law. Rather, they exhibit
fracture strengths comparable to the saturated, drained samples. We will

discuss below how this is probably due to dilatancy hardening of the sample.

The effects of strain rate on the fracture strength are shown in Figure

12. Sierra White granite exhibits a strain rate dependence of about 4.6%
increase for a 10-fold increase in strain rate. This is comparable to values of 4%
to 5% for Westerly granite (Brace and Martin, 1968). Tuffaceous sandstone,
however, shows a 10% increase between 10-6 S-1 and 10-4 s-l, but no

difference from 10-4 S-1 tO 10-3 s-l. Katahdin granite has an 8% increase in
strength over all strain rates tested.

Figures 16 to 22 are the complete stress strain curves for the fracture

test conducted on Katahdin granite. In each plot, the axial and two

circumferential strains are shown with solid lines, while the volumetric strains
are shown with dotted lines. Figures 23 to 30 are stress-strain plots for
Tuffaceous sandstone, and Figures 31 to 38 are the stress-strain plots for Sierra
White granite. Figures 39 and 40 are the stress-strain plots for Nickerson Lake

granite.

5.) Discussion

We will discuss the Katahdin and Sierra White granites together since

they both have similar strengths and both are low-porosity brittle rocks. The
tuffaceous sandstone is discussed separately since this specimen contains

macroscopic fractures and joints which appear to strongly control the strength

properties . VA

a.) Katahdin and Sierra White granite experiments

The most significant observation from these experiments is the similarity

of the fracture strength and elastic moduli for the Katahdin and Sierra White

granites over the range of strain rates, confining pressures and saturation

conditions examined. This is not unexpected since the incompressibility curves
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for both specimens are similar, suggesting that any difference in crack density
is not significant enough to change the macroscopic fracture or elastic
properties of the sample. From these results, it appears that Sierra White can
substitute for Katahdin granite in future test, which may be helpful sin, - the
mechanical properties of Sierra White granite are already well known.

The results of the controlled pore pressure experiments at strain rates
of 10-4 S-1 and confining pressures of 13.8 MPa show that pore pressures of
6.9 MPa were insufficient to change the fracture strength . In the cases of
Katahdin and Sierra White granite, this is explained by dilatancy hardening of
the sample (Brace and Martin, 1968). Figure 13 shows a plot of the radial
strain, pore pressure, and axial load plotted in real time for Katahdin granite.
Figure 14 shows the same for Sierra White granite. Note the increase in radial
strain with application of the pore pressure, which occurs over a characteristic
time dependent on the permeability of the rock and the properties of the pore
fluid. This characteristic time is longer than the time scale of the fracture
experiment as shown by the time span of the axial loading. During a fracture
experiment, axial loading of the sample opens microcracks parallel to maximum
compression, a phenomenon called dilatancy (Brace, Paulding, and Scholz,
1966). Dilatancy reduces the pore fluid pressure within the sample, thus
increasing the effective stress. When this happens faster than the characteristic
time for sample saturation, the pore fluid cannot continue to equalize the
confining pressure. Consequently, the effective stress on the sample approaches
that of the confining pressure, which increases the strength of the rock to a
magnitude equal to that found in the saturated and dry sample experiments.
Therefore, it is improbable that pore fluid pressure will affect the effective
stress of low porosity brittle rocks at low confining pressures, and strain rates
higher than 104 s-l. More testing is recommended to better define these results
at different strain rates, confining and pore pressures.

Figure 15 is a plot of the data from an experiment with Tuffaceous
sandstone, similar to Figures 13 and 14 above. Note, however, that application
of the pore fluid pressure does not produce an expected volumetric expansion;
rather, the volume stays constant. This result supports the observation from
the incompressibility test that the solid matrix of this rock type is very
impermeable (see below). This property enhances dilatancy hardening in the

7



sample and explains why the fracture strengths for the sandstones were the

same for test done in dry, saturated, and controlled pore fluid environments.

Tuffaceous Sandstone

Visual inspection of the tuffaceous sandstone confirms this is a highly

sheared and jointed rock. Any one of these cracks will propagate when the
;tresses at the tips exceeds a critical value. The stress intensity factor for a

crack in a solid medium scales as the inverse root of the crack len ,6h (Scholz,
1982, 1990). So it is not unexpected that the large size of the joints in the
sandstone significantly lower the strength of the sample. since compressive

failure of rock is usually accomplished by the propagation and coalescence of

microcracks into a fault (Scholz, 1968a,b; Peng and Johnson, 1972). Moreover,

the Young' s modulus for the sandstone is lower than the modulus for the
Katahdin granite and the Sierra White, as shown in Table 3, another

characteristic of jointed rock (Jaeger, 1979).

However, the incompressibility values measured for the tuffaceous

sandstone were markedly higher than the bulk moduli of both Katahdin and

Sierra White granite. The usual interpretation of this is the sandstones contain
a crack population less than the granites, a result which may lead lead one to

casually predict that the sandstones will be stronger. It appears then that the

presence of the large joints were undetected by the hydroscatic test.

This is because the total volume change of the sample is equal to the solid

matrix deformation plus closure of the joint (Walsh and Grosenbaugh, 1979).

During a compressibility test, the strain gages measure only the strain of the

solid matrix material: joints accommodate compressive stresses by closure
which is not detected unless the gage happens to be in close proximity, or

across, the joint. The potential for damage to a strain gage during an

experiment made us avoid the area of obvious joints when mounting the gages.

Therefore, compressibility measurements of tuffaceous sandstone

underestimates the volumetric strain, since a portion of the closure which

should be included in the calculation is of necessity missing. These experiments

suggest that results from hydrostatic test must be interpreted with care and

analyzed in conjunction with results from other test to accurately characterize

8



the mechanical properties of a sample.
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Tab I|1

Hydrostatic Compression Experiments

Katahdin Granite

Fz=imen Confining Pressure. MPa

KG 10 0 to 200

KG 13 0 to 200

KG 14 0 to 200

Tuffaceous Sandstone

E~iment Confining Pressure. MPa

TS 6 0 to 200

TS 11 0 to 200

TS 12 0 to 200

Fracture Experiments

Katahdin Granite

Eaclimnt Confining Pressure.MPa S Sta Rate

KG 5 13.8 Saturated, drained 10-3 s 1

KG 15 13.8 Saturated, drained 10-4 s-

KG 6 13.8 Saturated, drained 10-6 s 1

KG 17 6.7 Saturated, drained 104 s-1

KG 18 13.8 Pp = 6.7 MPa 10-4 s 1

KG 19 0.34 Saturated, drained 10-4S- 1

KG 20 0.34 Dry 104 s-1

KG 4 13.8 Dry 10-4s-1

11I



Tuffaceous Sandstone

E riment Confining Pressure,MPa Satuaion StainRate
TS 7 13.8 Saturated, drained 10-3 s-1

TS lB 13.8 Saturated, drained 10-4 s-1

TS 9 13.8 Saturated, drained 10-6 s-1

TS 8 6.7 10-4 s-1

TS 10 13.8 Pp = 6.7 MPa 10 4 s-1

TS 2 0.34 Saturated, drained 10-4 s-1

TS 4 0.34 Dry 10-4 s 1

TS 6C 13.8 Dry 10-4 S- 1

Sierra White Granite

Confining Pressure,MPa Saturtion Strain Rate

SW 1 13.8 Saturated, drained 10- 3 s-1

SW 3 13.8 Saturated, drained 10-4 s

SW 8 13.8 Saturated, drained 10-6 s- 1

SW 2 6.7 10-4s - 1

SW 6 13.8 Pp = 6.7 MPa 10- 4 S- 1

SW 5 0.34 Saturated, drained 10- 4 S- 1

SW 7 0.34 Dry. 10-4 s-1

SW 4 13.8 Dry 10-4s1

Nickerson Lake Granite

Confining Pressure,MSa a Strain Rate

NL 1 13.8 Saturated, drained 10-4s 1

NL 2 0.34 Saturated, drained 10-4s-1

12



Bulk Modulus from Hydrostatic Compression Test. GPa

5MPa 2 50 MPa 100 MPa 200fla
KG 10 8.3 21 32 41 48

KG 13 46

KG 14 49

SW 14.2 28 35 43 51

TS 6B 31.4 40 46 51 60

TS 11 57

TS 12 59

Table

Young's Modulus from Fracture Test. GPa

Katahdin Granite

KG 5 56.5

KG 15 57.7

KG 6 56.5

KG 17 57.4

KG 18 56.6

KG 19 46.1

KG 20 NA

KG 4 62.6

13



Tuffaceous Sandstone

TS 7 42.7

TS lB 45.5
TS 9 42.5

TS 8 34.9

TS 10 37.4

TS 2 NA
TS 4 44.4
TS 6C 50.6

Sierra White Granite

SW 1 55.4

SW 3 55.0

SW 8 56.3

SW 2 58.8
SW 6 47.2

SW 5 53.5

SW 7 51.9.
SW 4 56.3

Nickersn Lake Granite

NL 1 56.1

NL 2 NA
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APPENDIX I

State of Maine map showing location
of analogue test site and sample sites
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APPENDIX II

Description of all rock types in analogue test site
(from Neuman, 1967)
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Analogue Domestic Samples from Northern Maine

Station 2 - Rockabema Quartz Diorite
Altered quartz diorite. Most of formation is cataclastically sheared, although
cataclastic structure is absent around Lower Shin Pond where samples were
obtained. Sampled rock showed evidence of severe shearing and jointing. Little
chance of intact core recovery.

Station 3 - Allsbury Formation (slate member) [See Station 10]
Medium to dark-gray, fine-grained slate and siltstone. Severe jointing. Intact core
recovery will be difficult.

Station 4 - Volcanic Rocks
Altered andesitic and basaltic flows ane diabase, in some places intruded by
Rockabema quartz diorite. Gray fine-grained igneous rocks. Only mild surface
jointing. Good chance of core recovery.

Station 5 - Limestone
Largely reefal and reef detritus. Intensely sheared and penetrated with joints healed
with silaceous or calcareous cement. Severe jointing, but healed cracks make core
recovery possible.

Station - Shin Brook Formation
Tuffaceous sandstone and conglomerate. Moderate evidence of tectonic shearing or
jointing. Core recovery considered possible.

Station 6a - Grand Pitch Formation (quartzite member) [ See Station 12]
Oldest rocks in Shin Pond, Stancyville quadrangle (Cambrian). Samples are mostly
gray, green, and red quartzite. Intensely jointed- Intact core recovery unlikely. One
attempt failed.

Station 7 - Brecciated Katahdin Monzonite (migmatite)
Broad brecciated zone at eastern margin of the Katahdin batholith. This boundary
consists of a contact zone of brecciated and partially assimilated sedimentary rocks in
a granitic matrix. Mildly jointed samples suggest fair chance of core recovery.

Station 8 - Katahdin Quartz Monzonite (larger grained sample) [See Station 11 a]
Medium-gray to light-gray, medium-grained massive granitic rock representing the
Katahdin batholith. Mostly massive and structureless.. 2/3 feldspar, 1/3 quartz,
and 5 to 10% biotite. Beneath weathered layer (-6 inches) the granite shows
excellent potential for core recovery. No significant evidence of shearing, jointing.
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- Allsbury Formation (sandstone member) [See Station 3]
Sandstone and graywacke member of the Allsbury, consisting of sandstone and
minor amounts of pebble conglomerate. Thin sections of several beds show nearly
90% of clast are quartz; the remainder are feldspar, quartzite, muscovite and
carbonate grains. Samples from coring showed evidence of slight to moderate
shearing and jointing. Core recovery may be possible beneath the weathered layer.

Station I I - Katahdin Quartz Monzonite (finer grained sample) [See Station 8]
Same as Station 8, but this is finer grained member. Samples were retrieved from a
tailing pile on the south side of Nickerson Lake. Core recovery from abandoned
quarry should be excellent, although actual quarry was not located on this trip.

Station 12 - Grand Pitch Formation (siltstone member) [See Station 6a]
Intensely sheared and jointed rock with poor chance of intact core recovery. This
member consists of gray, dark-gray, green and red slate and siltstone with small
amounts of vitreous quartzite, graywacke, and tuff.
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APPENDTX III

Stress-Axial strain and stress-radial strain
plots from all experiments
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